Problem 1 (answer on page 1 of the booklet)

Find the domain of the function $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}-1}+\ln \left(4-x^{2}-y^{2}-z^{2}\right)$. Determine if the domain of f is an open region, a closed region or neither? Also, determine if the domain is bounded or unbounded. Also find the equation of the level curve through the point(1,1,0). (8 pts)

Problem 2 (answer on page 2 of the booklet)
Find the equations of the tangent plane and normal line to the surface $e^{x y}+\cos (x z)-\arctan (y z)+\frac{\pi}{4}=2$ at the point $(0,1,1)$. $(20 p t s)$

Problem 3 (answer on page $\mathbf{3}$ of the booklet)

Use the method of Lagrange multipliers to find the absolute maximum and minimum values of $f(x, y, z)=z-x^{2}-y^{2}$ subject to the constraints $x+y+z=1$ and $x^{2}+y^{2}=4$. (20 pts)

Problem 4 (answer on page 4 of the booklet)

For each of the following limits, say if it exists or no, justifying your answer. ($7+8+8$ pts)
a) $\lim _{(x, y) \rightarrow(1,0)} \frac{(x-1)^{2} \ln x}{(x-1)^{2}+y^{2}}$
b) $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin x \sin y}{\sin ^{2} x+\sin ^{2} y}$
c) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{4}+3 y^{4}}$

Problem 5 (answer on pages 5 and 6 of the booklet)

Suppose that the directions of zero change of a function $f(x, y, z)$ at the point $(1,1,0)$ are $\vec{\imath}-\vec{\jmath}$ and $-\vec{\imath}+\vec{\jmath}$. Suppose also that the derivative of the function $f(x, y, z)$ increases most rapidly at the point $(2,0,1)$ in the direction of $A=2 i+j-k$ and the value of derivative at this point is $2 \sqrt{6}$. Also suppose that
$f(1,1,0)=3, f(3,1,4)=2, f(2,0,1)=6$ and $\nabla f(3,1,4)=3 i-2 j+k$.
Let

$$
x=r+s, \quad y=r-s, \quad z=r^{2} s \quad \text { and } w=f(x, y, z)
$$

(i) Find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ at $(r, s)=(1,0)$ then estimate $w(1.1,-0.05)$. (8 pts)
(ii) Find the derivative of f at $(3,1,4)$ in the direction of $i+j-4 k$. (4 pts)
(iii) Find a line normal to the surface $w(r, s)=3 e^{r s}+\ln r$ in the $r s-p l a n e$. (8 pts)
(iv) Find a plane tangent to the surface $w(r, s)=5+e^{t}$ in the $r s t-p l a n e$. (9 pts)

